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Nomenclature

a = semi-major axis (orbital element); length unit
C = subindex for a term derived from the Coriolis effect
c = subindex for a term derived from the centrifugal forces
D = subindex for disturbing function
e = eccentricity (orbital element); dimensionless
f = true anomaly; rad
G = angular momentum vector per unit of mass; (length unit)2/time unit

I = inclination (orbital element); rad
J = impulse per unit of mass (delta-v); length unit/time unit
J2 = zonal harmonic coefficient of the second degree; dimensionless
K = subindex for Keplerian
k = unit vector in the z direction; dimensionless
M = mean anomaly; rad
N = reference system’s rotation rate; rad/time unit
N = modulus of N ; rad/time unit
n = orbit mean motion n =

√
µ/a3; rad/time unit

p = conic parameter p = aη2; length unit
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q = auxiliary symbol of order 1; dimensionless
r = radius from the earth’s center of mass; length unit
r = distance from the earth’s center of mass; length unit
S = scalar part of the impulse in the rotating frame; length unit/time unit
t = time
V = gravity potential; (length unit)2/(time unit)2

x, y, z = Cartesian coordinates of r; length unit
α = earth’s equatorial radius; length unit
∆v = delta-v (impulse per unit of mass); length unit/time unit
ε = auxiliary symbol of the order of the perturbation; dimensionless
η = eccentricity function η =

√
1− e2; dimensionless

θ = argument of latitude θ = f + ω; rad
µ = earth’s gravitational parameter; (length unit)3/(time unit)2

ρ, σ = scalar indices representing the perturbed dynamics; dimensionless
τ = time of perigee passage (orbital element); time unit
Ω = right ascension of the ascending node (orbital element); rad
ω = argument of the perigee (orbital element); rad
∗ = superindex. The indexed magnitude is valid under the averaging assumption

1 Introduction

It is demonstrated that the impulse in a single orbit of an earth’s satellite can be
computed analytically within a reasonable accuracy, in this way providing a vec-
torial expression that is used to reveal the more important features of the earth’s
satellite dynamics without need of resorting to Fourier series expansions or pertur-
bation theory. The impulse is referred to a rotating frame, and is computed in the
“averaging assumption”, that is, taking the osculating semi-major axis, eccentric-
ity, and inclination constant in the short time interval in which the argument of the
latitude of the satellite advances by 2π. In particular, by analyzing the impulse due
to the perturbation that arises from the J2 term of the earth’s gravitational potential
it is shown the existence of planar orbits, which may exist in the equatorial plane
and also in the meridian planes (polar orbits), as well as orbits with fixed perigee
at the critical inclination —all of them in agreement with well-known results.

In addition, it is shown that the information provided by this impulse can be
encapsulated in simple scalar indices. The evaluation of these kinds of indices can
be used for the creation of argument of the perigee vs. inclination maps, which
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provide valuable information on the perturbed dynamics. Furthermore, the proce-
dure is not restricted either to the J2 perturbation or to conservative perturbations,
and can be generally applied, although in most cases the quadratures defining the
impulse should be evaluated using numerical integration techniques.

The impulse is computed per unit of mass, which therefore will produce a cor-
responding variation of the velocity vector instead of the linear momentum. Hence,
it provides the equivalent delta-v per orbit of gravitational perturbations, which can
be useful in practical engineering problems. For instance, some maneuvers are de-
signed using just the Keplerian approximation [1]. Also, the initial design of con-
stellations is commonly made under the linear effect of the J2 perturbation, which
does not include the effects of the perigee dynamics [2]. In both cases a better es-
timation of the delta-v budget necessary to compensate the neglected effects may
be obtained from the theory provided here.

2 ∆v on a Keplerian orbit

The net delta-v from Keplerian motion between two times is

∆v =

∫ t2

t1

(
− µ
r3

r

)
dt, (1)

where the time dependence of r must be made explicit to perform the quadrature.
This can be done using the orbital elements representation of r.

x

r
= cos Ω cos θ − sin Ω sin θ cos I, (2)

y

r
= sin Ω cos θ + cos Ω sin θ cos I, (3)

z

r
= sin θ sin I, (4)

where
r =

p

1 + e cos f
, (5)

Equations (2)–(4) and (5) reveal the time dependence of the Cartesian coordi-
nates of the Kepler problem, but this is done in an implicit way through the true
anomaly. Although the true anomaly is an implicit function of time, the quadrature
in Eq. (1) can be solved directly either in f or θ making use of the preservation of
the total angular momentum of the Keplerian motion, which can be stated in the
usual form

r2
dθ

dt
= ‖G‖ =

√
µ p = na2η. (6)
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where dt = (1/n) dM , and hence

n dt = dM =
r2

a2η
dθ, (7)

making in this way available an explicit relation between the differentials of the
mean anomaly and the argument of the latitude.

An analytical expression of the ∆v of Keplerian motion between two arbitrary
times is obtained substituting Eq. (7) into Eq. (1) to give

∆v = −na
η

∫ θ(t2)

θ(t1)

r

r
dθ, (8)

which is integrated replacing r/r by its components in Eqs. (2)–(4), namely

∆v =
na

η

 − sin θ cos Ω− cos I cos θ sin Ω
− sin θ sin Ω + cos I cos θ cos Ω

sin I cos θ


∣∣∣∣∣∣∣
θ(t2)

θ(t1)

. (9)

As expected, Eq. (9) vanishes when it is evaluated along a full orbit θ(t2)−θ(t1) =
2π.

3 Effects of J2

For the earth, it happens that J2 = O(10−3) whereas all other coefficients are of
order 10−6. Then, the non-central potential

V = −µ
r

+
µ

r

α2

r2
J2

1

2

(
−1 + 3

z2

r2

)
, (10)

is quite representative of a wide class of non-resonant low earth orbits.
The Newtonian equations of motion derived from Eq. (10) are written in the

vectorial form

d2r

dt2
= − µ

r3
r + 3

µ

r3
α2

r2
J2

[(
5

2

z2

r2
− 1

2

)
r − zk

]
, (11)

whose solutions are no longer ellipses. However, as far as J2 is small, solutions to
Eq. (11) may be viewed as slightly distorted ellipses whose deformation evolves
with time, a case in which the concept of osculating elements can be used in the
description of the non-Keplerian motion. Thus, the position and velocity of the
body at a given moment in time can be used to define an instantaneous ellipse that
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is tangent (osculating) to the actual trajectory. Since each instantaneous ellipse
is defined by corresponding Keplerian elements, the non-Keplerian trajectory can
be described by the time evolution of these osculating elements, to whom all the
relations of the elliptic motion apply.

The osculating elements representation is quite useful to manifest the time de-
pendency of Eq. (11), in this way enabling the computation of the corresponding
∆v under the averaging assumption. That is, the osculating elements a(t), e(t),
I(t), Ω(t), ω(t), and τ(t) are assumed to evolve slowly when compared to the fast
evolution of either the mean anomaly, which is driven by the osculating mean mo-
tion n(t). Since the rate of variation of the argument of the latitude will only differ
from n in effects of the order of the perturbation (J2 in the present case), which are
related to the non-vanishing motion of argument of the perigee, these slow varying
elements are taken as constants in the computation of the quadratures defining the
∆v in the interval in which θ increases by 2π, that is, a full orbit.

3.1 The rotating frame

Note, however, that while taking a, e, and I constant along a full orbit may be
a reasonable approximation, the assumption that ω and Ω remain constant in the
same short time interval must be further qualified. In particular, as far as the right
ascension of the ascending node may have a slightly different value in the initial
and final times, independently of the smallness of this a priori unknown variation,
taking Ω constant is equivalent to say that the quadratures are solved in a rotating
frame which is moving with the rotation rate of Ω, a case in which corresponding
inertia terms should be added to obtain the ∆v.

The acceleration in the rotating frame is

r̈ = − µ
r3

r+3
µ

r3
α2

r2
J2

[(
5

2

z2

r2
− 1

2

)
r − zk

]
−2N × ṙ−N × (N ×r), (12)

where N = Nk is the rotation rate of the node, which is further assumed to
remain constant in the averaging assumption, and overdots are used to emphasize
that corresponding derivatives are measured in the rotating frame.

Then, the ∆v in the rotating frame is written

∆v = JK + JD + JC + Jc, (13)

where the Keplerian part JK is formally the same as in Eq. (1), viz.

JK =

∫ t2

t1

(
− µ
r3

r

)
dt, (14)

5



but now r no longer corresponds to Keplerian motion. The part of ∆v due to the
J2 perturbation is

JD =

∫ t2

t1
3
µ

r3
α2

r2
J2

[(
5

2

z2

r2
− 1

2

)
r − zk

]
dt, (15)

that of the Coriolis acceleration is

JC =

∫ t2

t1
(−2N × ṙ) dt, (16)

and the part of ∆v of the centrifugal terms is

Jc =

∫ t2

t1
[−N × (N × r)] dt. (17)

3.2 ∆v along a full orbit

The quadratures in Eqs. (14)–(17) can be solved in closed form in the averaging
assumption. In the rotating frame, taking into account Eqs. (2)–(4) and in view of
the differential relation in Eq. (7) also applies to the osculating case, it is easily
found

J∗K = −na
η

∫ θ1+2π

θ1

r

r
dθ = 0, (18)

where the asterisk notation is used to indicate that the quadrature is solved in the
averaging assumption. Note that, because the full orbit has been defined in terms
of the argument of the latitude rather than the mean anomaly, dealing with the (un-
known) motion of the perigee is avoided in the integration of Eq. (18). Therefore,
the ∆v undergone by the satellite along a full orbit is due only to the J2 perturba-
tion and the inertia terms.

Because the flow represented by Eq. (11) enjoys axial symmetry, following
derivations are simplified without loss of generality by choosing Ω = 0. Then,
Eq. (15) is rewritten as

JD =
3

2
J2

∫ θ2

θ1

na

η

α2

r2

 (1− 5 sin2 I sin2 θ) cos θ
cos I(1− 5 sin2 I sin2 θ) sin θ
sin I(3− 5 sin2 I sin2 θ) sin θ

dθ, (19)

where the dependence of r on the argument of latitude is made explicit by replacing
f = θ − ω in Eq. (5). Because JD is already of the order of J2, errors introduced

6



by neglecting time variations of ω when integrating Eq. (19) along a full orbit are
of higher order of J2. Then, Eq. (19) is integrated between θ1 and θ1 + 2π to give

J∗D = S

 (1− 5 cos2 I) cosω
(11− 15 cos2 I) cos I sinω
3(1− 5 cos2 I) sin I sinω

, (20)

where the scalar part

S =
3

4
J2πan

α2

p2
e

η
=

(
3

4
J2π

√
µ

α

)
1

(a/α)5/2
e

η5
, (21)

is made of the product of a constant part related to the parameters of the prob-
lem, enclosed by brackets in the right side of Eq. (21), and a nondimensional part
which varies with the orbit semi-major axis and eccentricity. On the other hand,
the vectorial part of J∗D only depends on the inclination and the argument of the
perigee.

Therefore, if the variations experienced by the orbital elements as a result of the
disturbing effect of J2 are small, then, when the argument of the latitude increases
by 2π the satellite undergoes a variation of its velocity in the rotating frame as given
by Eq. (20). Note that, even though the argument of the perigee is poorly defined
for the lower eccentricity orbits, Eq. (20) still applies by using the elements e cosω
and e sinω, instead of e and ω.

Besides, since the precession of the node is a consequence of the J2 perturba-
tion, it is further assumed that (N/n) = O(J2). Hence, carrying out the quadra-
tures related to the inertia forces either in the mean anomaly or the argument of the
latitude will only differ in higher order of J2 terms. Then, it is simple to check that

J∗C =

∫ t(M1+2π)

t(M1)
(−2N × ṙ) dt = 0, (22)

thus making null the contribution of the Coriolis acceleration to ∆v∗ in the rotating
frame. Finally,

J∗c =

∫ t(M1+2π)

t(M1)
[−N × (N × r)] dt = −3πane

N2

n2

 cosω
cos I sinω

0

 , (23)

provides the part of ∆v∗ due to the centrifugal forces.
Therefore, the total ∆v∗ in a full orbit and under the averaging assumption is

obtained by adding Eqs. (20) and (23), to give

∆v∗ = S

 (1− 5 cos2 I − ε) cosω
(11− 15 cos2 I − ε) cos I sinω

3(1− 5 cos2 I) sin I sinω

 , (24)
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where

ε = 4
(N/n)2η

J2(α/p)2
, (25)

which is positive for the earth in view of it has the same sign of J2.
Note that, because ε = O(J2), the contribution of the centrifugal acceleration

to the ∆v might be neglected in the 2π interval for small values of J2. Hence,
working at first order of J2, Eq. (20) still applies to a rotating frame whose average
rotation rate is

N = [Ω(t2)− Ω(t1)]
n

2π
= nO(J2). (26)

3.3 Discussion

Equation (20) shows that, up to first order effects of J2, the qualitative effects of
the dynamics only depend on the orbit inclination and argument of the perigee,
whereas the eccentricity and semi-major axis just scale the problem. Because of
this, the lower eccentricity orbits undergo the smaller perturbations for a given
semi-major axis. Conversely, for a given eccentricity the lower altitude orbits ex-
perience the higher perturbations. In particular, circular orbits remain circular in
the rotating frame. This behavior is illustrated in Fig. 1, where the nondimensional,
non-constant part of S, viz. e((1− e2)(a/α))−5/2, is represented for the variation
of the semi-major axis between one and five earth’s radius and all the range of
eccentricities.

Other dynamical features of the J2 problem are derived from the vectorial part
of Eq. (20). Thus, when cos I = 0 the y axis component of J∗D vanishes. Since
the x axis has been chosen in the direction of the ascending node, it happens that
polar orbits are planar solutions of the J2 problem. In this case, the magnitude of
the vector in Eq. (20) is

√
5− 4 cos 2ω, showing that the less perturbed polar orbits

have ω = 0 and the more perturbed polar orbits occur with ω = π/2. Besides, the
z axis component of J∗D vanishes for equatorial orbits, so they are planar solutions
where the non-vanishing x and y components of J∗D evolve harmonically with
constant modulus. Finally, for those critical inclinations such that cos2 I = 1/5,
the variation of the velocity vector in one full orbit takes the direction of the y axis
(the direction orthogonal to the node) and is proportional to sinω. Hence, in the
rotating frame, orbits with equatorial perigee do not experience any variation of the
velocity vector in a full orbit. For non-equatorial perigees the y axis component of
J∗D no longer vanishes, but it is always possible to find a different rotating frame
where it does. Therefore, orbits with critical inclination are closed (non-Keplerian)
ellipses in the right rotating frame.

Second order corrections due to the centrifugal forces introduce both quali-
tative and quantitative variations. Namely, the appearance of ε > 0 in Eq. (24)
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Figure 1: Variation of the non-constant part of S in Eq. (21). Nondimensional
units.

prevents the simultaneous vanishing of the components of ∆v∗ in the x and z axes
directions except for orbits with ω = ±π/2 and critical inclination, and orbits with
equatorial perigee and such inclination that 5 cos2 I + ε = 1. Hence, closed non-
Keplerian ellipses in the rotating frame can occur only in these two cases. This is
an important modification with respect to the first order dynamics, where all crit-
ically inclined orbits undergo zero ∆v∗. Finally, because ε depends on p and η,
in addition to scaling ∆v∗, the eccentricity and semi-major modify the magnitude
of ε, but these changes do not modify substantially the dynamics. Note that ε also
depends on N , which in turn may depend on e and a; however, the possible ap-
pearance of e and a in N is not expected to cancel, in general, the term p2η of
ε.

4 Searching for a significant scalar index

From the discussion above, it seems natural to define a scalar index based on the
magnitude of the ∆v of the disturbing force in a full orbit. This kind of index
provides a measure of the variation of the velocity vector when θ has increased
by 2π, and will be general for any perturbed problem, either conservative or not.
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Note that this definition is essentially different from a similar one in [3], which
provides an estimation on how the perturbed orbit departs from the Keplerian case
by simply accumulating the magnitude of the disturbing acceleration when the
mean anomaly increases by 2π, thus missing the fundamental cases in which the
perturbation effect may balance along the orbit. The complementary use of both
kinds of indices may deserve further study.

4.1 First order effects

In the particular case of the J2 problem, the significant information is obtained
from the non-dimensional index

ρ =
√

(1− 5 cos2 I)2 + 8 sin2 I(1 + 5 cos2 I) sin2 ω, (27)

which will give an approximation of the active control

∆v = ‖J∗D‖ = Sρ, (28)

as derived from Eq. (20), needed for the maintenance of a nominal, non-Keplerian
orbit under the J2 perturbation.

In view of Eq. (27) does not depend on any parameter, the qualitative features
of the J2 perturbed dynamics can be represented by a single contour plot in the
(ω, I) plane. Application to different orbital configurations in the plane (a, e) of
dynamical parameters becomes, then, a simple matter of scaling.

The evolution of the index ρ is presented in Fig. 2, where, for the symmetries
of Eq. (27), the range is limited to direct orbits and −π/2 ≤ ω ≤ π/2. As shown
in the figure, apart from equatorial orbits where the index takes the constant value
ρ = 4, the variations in the velocity vector undergone by the satellite in a full
orbit always increase when the argument of the perigee varies from 0 to ±π/2
and generally decrease with inclination. There are two notable exceptions to this
general behavior. One the one hand, as expected from the previous discussion
above, ∆v vanishes at the critical inclination when the argument of the perigee is
0. On the other hand, the maximum ∆v occurs when ω = ±π/2 and the inclination
is about 30 deg. More precisely, as derived from Eq. (27), this maximum takes the
value ρ =

√
256/15 ≈ 4.13, and happens when I = arccos

√
11/15 ≈ 31.1 deg.

Remarkably, any orbit with this last inclination has null component of J∗D in the y
axis direction.

Note that the value to which the index ρ evaluates may obscure some relevant
information on the orbit behavior. Indeed, a control strategy based on Eq. (27)
includes efforts in minimizing the departure from the node in the rotating frame.
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Figure 2: Variation of the nondimensional index ρ ≡ ρ(ω, I) in Eq. (27).

However, increasing the control trying to minimize this departure may be unprac-
tical, and common design strategies may focus on the orbit evolution in the orbital
plane. Hence, an alternative scalar index that neglects the y axis component of the
variation of the velocity vector in the rotating frame may be considered. Thus, the
new scalar, nondimensional index

σD =
∣∣∣1− 5 cos2 I

∣∣∣√1 + (8− 9 cos2 I) sin2 ω, (29)

is defined by neglecting the y component of J∗D in Eq. (20).
A contour plot based on the index σD shows interesting details that remained

hidden in Fig. 2. Now, as displayed in Fig. 3, σD vanishes for any orbit with criti-
cal inclination regardless of its argument of the perigee, as noted by the horizontal
contour in the upper part of Fig. 3, in agreement with the well-known behavior
predicted by the secular theory up to the first order, cf. Eq. (10.95) of [4], for
instance. Other differences with respect to the ρ diagram in Fig. 2 arise in the
region of low inclination orbits, where σD vanishes for I = 0 and ω = ±π/2.
Nevertheless, except for values of ω close to ±π/2, the lower inclination or-
bits still show as highly perturbed in terms of σD. On the other hand, with the
definition of the new index the most perturbed orbits remain at the inclination
I = arccos

√
11/15; this was expected because they happen at ω = ±π/2 where
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the neglected y component of J∗D vanishes, and hence the corresponding value
of the index is not affected: σ =

√
256/15 ≈ 4.13. Finally, all the orbits with

I = arccos
√

8/9 ≈ 19.5 deg. undergo a ∆v with the same magnitude, as repre-
sented by σD, irrespective of their argument of the perigee, as noted by the hori-
zontal contour in the lower part of Fig. 3.
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Figure 3: Contour levels σD ≡ σD(ω, I) as defined in Eq. (29).

4.2 Second order corrections

The index σD can be further refined to include second order effects due to the
centrifugal forces. Then, the full definition of ∆v∗ in Eq. (24) with the y axis
component removed is used to define the scalar index

σ =
√

(1− 5 cos2 I − ε)2cos2 ω + 9 (1− 5 cos2 I)2 sin2 I sin2 ω, (30)

which now, because of the form of ε in Eq. (25) includes the dependency on a and e
in the index, loosing in this way the generality of the indices ρ and σD used before.

For a qualitative description based on σ it is enough to know that ε is positive
and of the order of J2. Then, in order to illustrate the refinements introduced by
the new index in the description of the dynamics, a value ε = J2 = 10−3 has
been chosen as representative of the earth’s case. By taking this fixed value, the
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dependency on the eccentricity and semi-major axis is formally removed from σ,
which, therefore, remains general for any a and e. Now, as shown in Fig. 4, the new
index is able to reveal the modifications of the dynamics introduced by the second
order effects of J2, showing that only two orbits survive with σ = 0, either with
equatorial argument of the perigee or with ω = π/2. For the former, the inclination
slightly departs from the critical value in agreement with the previous discussion
in Section 3.3.

Note that, since the modifications introduced by σ are of the order of J2, the
values of the contours displayed in Fig. 4, and also in the next Fig. 5, have been
multiplied by 1000 in order to get the plots as legible as possible.
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Figure 4: Contours σ, as given by Eq. (30) with ε = 10−3, in the vicinity of the
critical inclination.

A more precise index can be obtained by making

N = −3

2
J2
α2

p2
n cos I, (31)

an expression that corresponds to the secular rate of the classical first order ap-
proach based on the Lagrange planetary equations —cf. Eq. (10.94) of [4]. Then,
plugging Eq. (31) into Eq. (25) results in

ε = 9J2
α2

p2
η cos2 I, (32)
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and hence

σ =
√

(1− 5q cos2 I)2 cos2 ω + 9 (1− 5 cos2 I)2 sin2 I sin2 ω, (33)

where the modifier

q = 1 +
9

5
J2
α2

a2
1

η3
, (34)

now includes the expected dependency of σ on the orbit semi-major axis and ec-
centricity, thus requiring different contour plots for different orbital configurations
in the (a, e) plane. This effect is only quantitative and can be appreciated in Fig. 5.

This final refinement of the scalar index would require to complement the
present approach with the classical theory, which seems to be unnecessary at all
from the point of view of providing a qualitative description of the J2 perturbed
dynamics.

5 Conclusions

The physical definition of the delta-v provides a simple way of investigating the
dynamics of perturbed Keplerian problems. In the case of the dynamics arising
from the J2 term of the earth’s gravitational potential, the delta-v of the disturbing
function in the time interval in which the argument of the latitude increases by 2π
has been computed analytically, from which two different scalar indices have been
derived. In particular, the dynamics of orbits at the critical inclination is correctly
described by means of one of these indices, although it needs to incorporate second
order effects of J2, which are associated to the centrifugal force derived from the
rotating frame used in the computations.

The procedure developed here needs only the integration of accelerations, and,
for this reason, is of general application to perturbed Keplerian problems, not be-
ing constrained either to J2 perturbations or to conservative perturbations. Further-
more, it may be extended to the case of perturbed non-Keplerian problems as far
as the unperturbed orbit evolves in a closed trajectory. In general, the quadratures
required in the computation of the delta-v and corresponding scalar indices will be
integrated numerically.
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Figure 5: Contours σ, as given by Eq. (33), in the vicinity of the critical inclination.
a) a = α, e = 0. b) a = α/(1− e), e = 0.6.
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