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GRAVITATIONAL ACTIONS UPON A TETHER IN A NON-UNIFORM
GRAVITY FIELD WITH ARBITRARY NUMBER OF ZONAL

HARMONICS

Hodei Urrutxua∗, Jesús Peláez∗ and Martin Lara∗

We develop general closed-form expressions for the mutual gravitational potential, resultant
and torque acting upon a rigid tethered system moving in a non-uniform gravity field pro-
duced by an attracting body with revolution symmetry, such that an arbitrary number of zonal
harmonics is considered. The final expressions are series expansion in two small parameters
related to the reference radius of the primary and the length of the tether, respectively, each
of which are scaled by the mutual distance between their centers of mass. A few numeri-
cal experiments are performed to study the convergence behavior of the final expressions,
and conclude that for high precision applications it might be necessary to take into account
additional perturbation terms, which come from the mutual Two-Body interaction.

INTRODUCTION

Some problems in celestial mechanics demand an increasing level of accuracy in their modeling. They
require the inclusion of small perturbing terms in the equations of motion. One of these often neglected
effects is the mutual coupling between the orbital and rotational motion, which in some cases is known to
have a substantial impact in the dynamics of extensive bodies, such as planetary satellites,1 asteroids,2, 3 or
large space structures, such as tethers.4

An ubiquitous scenario in Astrodynamics is the mutual gravitational interaction between two celestial
bodies. To take into account this interaction in detail would be a tremendous problem if we would like to
include all possible contributions. Fortunately, the effects of some of these contributions, for example the
deformability of the bodies, can be neglected in many situations and simpler formulations can be used.

Regarding these simpler models, an order of complexity can be introduced ranging from the classical Two-
Body problem, in which both celestial bodies are modeled as isolated particles, up to the Full Two-Body
Problem, where they are considered as rigid bodies. In the latter case, the gravitational potential energy of the
system depends on the mass distribution, shape and orientation of each one of the bodies, yielding elaborate
right hand sides in the equations of motion. For example, generalization of harmonic expansions for more
than one body involves arduous expressions or even untractable for practical applications.

In order to obtain simpler estimates for these mutual interactions, early studies used perturbation theory,
assuming that one or both of the bodies are nearly spherical and the coupling between rotational and transla-
tional motion is weak and may even be separated from each other.5 Later studies revisited the problem trying
to relax some of these constraints on the bodies, generalizing the gravity field of one or even both bodies, thus
leading to the Full Two-Body Problem. Alternatively, recent efforts try to deal with full models and reduce
the number of degrees of freedom using canonical simplification theory (see Ref. 6 and references therein).

Later studies revisited the problem trying to relax some of these constraints on the bodies, generalizing the
gravity field of one or even both bodies, thus leading to the Full Two-Body Problem. Maciejewski studied
systems consisting of a finite number of extended rigid bodies, and proved the existence of relative equilibria.7

Subsequent research studied the stability of these equilibria and identified fundamental stability criteria.8, 2, 3
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However, even though the general case of bodies with arbitrary shape and mass distribution can be studied
qualitatively in terms of relative equilibria and their stability, a precise quantitative evaluation of the mutual
gravitational actions requires in most cases numerical methods, so specific codes are often developed for
simulating the roto-translational coupled dynamics.9

As a particular case of the Full Two-Body Problem, the motion of a linear body in a spherical gravity field
has also been studied for practical applications on tethered space missions.4 The motion of the center of mass
of a tethered system turns out not to be Keplerian. For the case of a massless tether, this can be easily handled
by studying the motion of the two end-masses of the tether along with the constraint that their distance must
remain constant.

However, when the mass of the tether needs to be considered, this leads to the necessity of treating the
tether as an extensive body in order to properly compute the gravity force resultant and torque upon it.4

Usually, the primary is considered as a spherical body, for simplicity. Considering a non-uniform gravity
field of the primary has only been accomplished numerically, or those analytic attempts have just considered
a handful of terms of the primary’s expansions in spherical harmonics.10 However, as far as the authors are
aware, never before a closed-form analytic formulation has been obtained for the gravitational actions of a
tether in a gravity field where an arbitrary number or zonal harmonics of the primary body are retained.

In the current paper, we expose a detailed derivation of the gravitational actions upon an extensive tether
orbiting a primary with infinitely many zonal harmonics, as a simplified case of a restricted Full Two-Body
Problem. The main part of these derivations was addressed in the Engineering Thesis of Reference 11. The
general expressions are given as a double embedded summation in two small parameters, and a brief look is
taken at the convergence rates of these series for some test scenarios. Lastly, the effect of the zonal harmonics
in the planar equatorial motion of a tether is briefly discussed.

DYNAMICS OF THE TWO-BODY PROBLEM

For a rigid body of total mass m and center of mass G, the equations governing its dynamics with respect
to an inertial frame are

d

dt
(m~vG) = ~R,

d ~HG

dt
= ~MG

where ~vG is the velocity of its center of mass, ~R is the force vector acting upon the body, and ~HG and ~MG

are its angular momentum vector and external torque at G, respectively. This leads to a system of six degrees
of freedom.

When we have two bodies instead, affected solely by their mutual gravitational interaction, the former
equations apply to each of the bodies, yielding

m1 ~̈r1 = ~R12

m2 ~̈r2 = ~R21

¯̄IG1
◦ ~̇ω1 + ~ω1 ∧

(
¯̄IG1
◦ ~ω1

)
= ~M12

¯̄IG2
◦ ~̇ω2 + ~ω2 ∧

(
¯̄IG2
◦ ~ω2

)
= ~M21

where ~ri, ~ωi and ¯̄IGi
are, for i = 1, 2, the position vector, angular velocity vector and inertia tensor at the

center of mass for each one of the bodies. Additionally, ~Rij and ~Mij are the gravitational force and torque,
respectively, that the body i perceives due to the presence of the body j. The kinematic equations relating the
attitude of each body with its angular velocity vector ~ωi should be added to these equations. The system has,
in principle, twelve degrees of freedom. However, as only their mutual gravitational interaction is considered,
there are no external forces upon the system, so

~R12 + ~R21 = ~0 (1)
~M12 + ~M21 + ~R21 × (~r2 − ~r1) = ~0 (2)
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Figure 1: Geometric layout of the Two-Body Problem and nomenclature

Consequently, considering equation (1), the translational motion can be more conveniently broken down
into 1) the motion of the center of mass, G, which remains unperturbed, and 2) the relative motion of the two
bodies around the G. This can be done introducing the generalized coordinates ~rG and ~r (see Fig. 1), such
that

~r = ~r2 − ~r1

~rG =
m1

m
~r1 +

m2

m
~r2

 ⇔

~r1 = ~rG −
m2

m
~r

~r2 = ~rG +
m1

m
~r

In absence of external forces, ~̈rG = ~0, so the translational part of the motion reduces to solving the equation

~̈r =
m

m1m2

~R21

where the main concern is the proper evaluation of the force vector ~R21. In the most general case, both bodies
are extensive. By this we mean that the mass of the body i is distributed in a finite volume Si, such that each
differential mass element, dmi, is located with respect to its center of mass by the vector ~si (see Fig. 1).
Therefore, in order to evaluate the macroscopic gravitational interaction force that the body i = 1 exerts upon
the body i = 2, it is necessary to integrate the Newtonian attraction between every pair of mass elements
dm1 and dm2, by means of the double volume integral

~R21 = −G
∫
S2

∫
S1

~r + ~s2 − ~s1
|~r + ~s2 − ~s1|3

dm1 dm2 (3)

Analogously, there are no external torques and due to the equation (2) the angular momentum ~HG remains
constant, and the main issue for the rotational dynamics is the adequate quantification of the torque ~M21.
Evaluating the torque that every mass element dm1 creates upon every mass elements dm2 due to their
mutual gravitational attraction, and integrating twice to obtain the macroscopic torque, we get

~M21 = −G
∫
S2

∫
S1

~s2 ∧ ~r − ~s2 ∧ ~s1
|~r + ~s2 − ~s1|3

dm1 dm2 (4)

When we study the motion of these two bodies using Equations (3) and (4), we refer to this as the Full
Two-Body Problem, schematically represented in Figure 2a. However, evaluating these integrals can be fairly
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(a) Full Two-Body Problem
Attracting Body: Extensive
Attracted Body: Extensive

(b)
Attracting Body: Mass Point
Attracted Body: Extensive

(c)
Attracting Body: Extensive
Attracted Body: Mass Point

(d)
Attracting Body: Mass Point
Attracted Body: Mass Point

Figure 2: Conceptual drawings illustrating different approaches to the Two-Body Problem

difficult in a general case, to the extent that a numerical computation might be the only feasible approach.
Therefore, simplifying assumptions are usually made. Different assumptions are more or less adequate for a
certain aim, so it is one’s decision to choose which simplifications suffice, knowing that the more complex
approaches better represent the physics, but they are also more arduous to work with.

For example, if one considers both bodies are sufficiently far from each other, then |~s1| � |~r| and |~s2| �
|~r|, so the denominators in integrals (3) and (4) can be approximated by series expansions in powers of ~s1/|~r|
and ~s2/|~r|, up to the desired degree of approximation.

One can go a step further and take the limiting case where one of the bodies has a null volume, and thus
all the mass is reduced to a point, i.e. |~si| → 0 and a volume integral vanishes. This simplification can be
seen from two different perspectives. If one of the two bodies is so much more massive than the other, as
for example m1 � m2, then one can assume a Restricted Two-Body Problem, were basically the body m2

orbits around m1, while m1 does not notice at all the gravitational pull of m2. Hence, we can refer to m1 as
the attracting body, and to m2 as the attracted body. Hence the two obvious possibilities are considering m1

or m2 as an extensive body, and assume the other as a mass point.

For instance, if one reduces the attracting body to a mass point (|~s1| → 0) while considering the orbiting
body as extensive (see Figure 2b), this model can be used to study the orbital attitude dynamics of a satellite
around a spherical planet. The attracting mass point would cause a slightly different gravitational pull upon
every mass element dm2 of the extensive body, thus requiring a single volume integration in S2, and allowing
us to compute a gravitational torque upon the orbiter. In this case, Eqs. (3) and (4) reduce to

~R21 = −Gm1

∫
S2

~r + ~s2
|~r + ~s2|3

dm2

~M21 = −Gm1

∫
S2

~s2 ∧ ~r
|~r + ~s2|3

dm2

where for a small orbiter |~s2| � |~r| seems a fair assumption, and thus the former equations can be further
simplified. Hence, expanding the former expressions in powers of s2/r and retaining up to second order
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terms, we get

~R21 ' −
Gm1m2

r3
~r − 3

Gm1m2

r5

[(
IG2
− 5

2 r2
~r ◦ ¯̄IG2

◦ ~r
)
~r + ¯̄IG2

◦ ~r
]

~M21 ' −3
Gm1m2

r5
~r ∧

(
¯̄IG2 ◦ ~r

)
where ¯̄IG2 is the tensor of inertia of the attracted body at its center of mass, G2.

The opposite situation is encountered when we consider instead the orbiting body as a mass point (|~s2| →
0), and the attracting body as extensive (see Fig. 2c), thus assuming that every dm1 of the attracting body is
causing a different attracting force upon the mass point orbiter, which also implies a single volume integral. A
typical application example is the precise orbit propagation of a satellite orbiting a planet with a non-uniform
gravity field which perturbs the trajectory. In this case, Eqs. (3) and (4) reduce to

~R21 = −Gm2

∫
S1

~r − ~s1
|~r − ~s1|3

dm1

~M21 = ~0

Finally, the simplest model would be to consider both bodies as mass points attracting each other. This
provides a computationally fast solution, though it is not necessarily accurate for close objects. However, the
further both bodies are from each other, this approximation becomes increasingly precise. This is clearly the
case of the Solar System planets, which are millions of kilometers away from each other, so this approach
is often used in evaluating the third body perturbations due to the presence of distant celestial bodies, such
as the lunisolar perturbation on an Earth orbiting satellite. Figure 2d represents this model, and gravitational
actions reduce to their simplest expression

~R21 = −G m1m2

r3
~r

~M21 = ~0

So, in the most general approach, namely the Full Two-Body Problem, a double volume integration is
required, which usually makes this approach difficult and computationally expensive.

However, when one of the two bodies is so slim as a tether, this body would very well admit to be treated
as a linear body, and one of the volume integrals would turn into a linear integral, greatly simplifying the
resulting equations, so in the following we shall consider the Full Two-Body approach where the attracting
celestial body is extensive, as well as the tether itself, in order to evaluate gravity forces and torques upon
the tether.

THE TETHERED SYSTEM

The tethered system under consideration, or by extension simply the tether, is made up of two spacecrafts
tied one to another by a tether, considered as a long, fixed-length, rigid rod. This model is commonly referred
to as a dumbbell model in case of a massless tether, or extended dumbbell model when the mass of the tether
is taken into consideration. We shall take the latter approach in the ongoing derivations. Therefore, both
spacecrafts will be modeled as mass points of massesm1 andm2 respectively, whereas the tether, of constant
length LT and mass mT , will be considered to have a linear∗ mass density, ρL, where ρL = mT /LT if the
density is homogeneous. The center of mass of the tethered system, G, is then located on the tether itself,
somewhere in-between both end-masses, at a distance L1 from the mass m1 and a distance L2 from the mass
m2, such that LT = L1 + L2, as shown in Figure 3.

∗Space tethers are so long and thin that considering them as one-dimensional elements proves a fair assumption.
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The mass geometry of a tether is then fully defined by the parameters m1, m2 and mT . However, we shall
conveniently introduce three equivalent parameters, namely m, Λ and φ defined by

m = m1 +m2 +mT (5)

Λ =
mT

m
(6)

ν1 = cos2 φ =
1

m

(
m1 +

1

2
mT

)
(7)

ν2 = sin2 φ =
1

m

(
m2 +

1

2
mT

)
(8)

where m is the total mass of the tethered system, Λ ∈ [0, 1] is the non-dimensional mass of the tether
(frequently Λ � 1), ν1 and ν2 are the reduced end-masses, and φ ∈ [0, π/2] is known as the mass angle,
since the reduced masses satisfy ν1 + ν2 = 1.

The inverse transformations can be accomplished with the relations

m1 = m

(
cos2 φ− 1

2
Λ

)
m2 = m

(
sin2 φ− 1

2
Λ

)
mT = mΛ.

If we place the origin of the coordinate systemO at the center of mass of the attracting body, we can define
the position vector of the tether center of mass, ~rG, as

~rG = rG · ~uG, rG =| ~rG |

Figure 3: Scheme showing the rigid tethered sys-
tem considered in the analysis and the nomencla-
ture used for geometrical variables and vectors in
the description of the extended dumbbell model

Let s be an arclength coordinate indicating the
linear position of any tether mass element, dm,
measured from the point G along the tether. The
direction of the tether is given by the unity vec-
tor ~u, arbitrarily pointing from the end-mass m1 to
m2. This allows us to define the angle α as the
one formed between the unit vectors ~uG and ~u (see
Fig. 3).

By means of these unit vectors, we can express
the position of any dm of the tether, ~r, as

~r = rG · ~uG + s · ~u

or more conveniently expressed in terms of the new
non-dimensional variable η = s/rG, as

~r = rG(~uG + η · ~u) (9)

It is of great interest to use the variable η instead
of s, since for practical cases η � 1. Note that the
modulus of the vector ~r can be expressed as

r = |~r| = rG
√

1 + 2 η cosα+ η2 (10)

and therefore we will be able to expand its inverse in Legendre series; note that a Legendre series is a
particular case of ultraspherical series,12 that we briefly describe in appendix . Thus, to expand 1/r in
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Legendre series we may simply use Eq. (30) with λ = 1/2 and γ = − cosα, along with the relation (31),
which yields

1

r
=

1

rG

∞∑
n=0

(−1)n ηn Pn(cosα) (11)

where Pn is the nth degree Legendre Polynomial.

Notice that the gravitational attraction vector upon every single dm of the tether, ~fdm, is not necessarily
aligned with the position vector ~r in general, since the gravity field produced by the extensive body located
at O is not uniform.

GRAVITATIONAL ACTIONS IN A SPHERICAL GRAVITY FIELD

If the gravity field of the attracting body is considered uniform or spherical, then it is by all means equiva-
lent to a mass point of mass M , and hence the Full Two-Body Problem reduces to the approach sketched in
Figure 2b, where the attracting body is modeled as a mass point and the tether as an extensive body.

Gravitational Potential

Under these hypothesis, the mutual gravitational potential, Vs, is given by

Vs = −
∫
S

µ

r
dm,

where µ = GM is the gravitational parameter of the primary, r is the modulus of the position vector of each
tether element dm, and the integral above extends to the whole volume S occupied by the tethered system.
Using Eq. (10) the integral takes the form

Vs = − µ

rG

∫
S

dm√
1 + 2 η cosα+ η2

and after expanding the denominator in Legendre series, as in Eq. (11), the gravitational potential takes the
form

Vs = − µ

rG

∞∑
n=0

(−1)nPn(cosα) In (12)

with the functions In given by

In =

∫
S
ηn dm. (13)

These integral functions, In, are nothing more but the n-th order inertia moments, and can be calculated
for a tethered system, due to its particular homogeneous linear mass distribution, in a simple manner up to
the desired n-th order. If we apply the change of variable

dm = ρL ds = ρL rG dη

and expand the integral, we get

In = m1 η
n
1 +m2 η

n
2 + ρL rG

∫ η2

η1

ηn dη

where the integration boundaries are related to the geometric and mass properties of the tether through

η1 = −L1

rG
= −LT

rG
· sin2 φ

η2 = +
L2

rG
= +

LT
rG
· cos2 φ.
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It is also preferable to express these higher order inertia moments, In, not as a function of the variables
{m1,m2, ρL}, but rather as a function of {m,φ,Λ} instead, using Eqs. (5) to (8). Hence, solving the integrals
and with adequate trigonometric manipulations, we easily obtain the In functions as follows

I0 = m
I1 = 0

I2 =
m

24

(
LT
rG

)2 (
3− 3 cos(4φ)− 4 Λ

)
I3 =

m

4

(
LT
rG

)3

cos(2φ)
(

sin2(2φ)− Λ
)

I4 =
m

640

(
LT
rG

)4 (
− 30 cos2(4φ)− 20 cos(4φ)− 80 Λ cos(4φ) + 50− 112 Λ

)
I5 =

m

24

(
LT
rG

)5 (
3− 3 cos4(2φ)− 5 Λ cos2(2φ)− 3 Λ

)
I6 = . . .

(14)

Figure 4: Functions an(φ,Λ) up to n = 5, for two different values of parameter Λ

At this point, we realize that the functions In obey the form

In = m

(
LT
rG

)n
an(φ,Λ) (15)

where the nondimensional coefficients an(φ,Λ) do not depend on the size of the tether, but just its mass
distribution, and it should be noted that an > 0 (see Fig. 4). This notation gives a more clarifying idea of
how negligible each term is, since

(
LT

rG

)
� 1. Thus, by identifying terms between the calculated In and

their proposed form, the coefficients an(φ,Λ) may be easily obtained:

a0 = 1
a1 = 0

a2 = 1
24

(
3− 3 cos(4φ)− 4 Λ

)
a3 = 1

4 cos(2φ)
(

sin2(2φ)− Λ
)

a4 = 1
640

(
− 30 cos2(4φ)− 20 cos(4φ)− 80 Λ cos(4φ) + 50− 112 Λ

)
a5 = 1

24

(
3− 3 cos4(2φ)− 5 Λ cos2(2φ)− 3 Λ

)
a6 = . . .

(16)

Note that for a non-homogeneous mass distribution (as for a varying cross-section tether), the inertia mo-
ments In would not be those collected in Eqs. (14), but they would instead need to be calculated accordingly,
from its definition in Eq. (13).

8



For a massive tether the mass angle φ ranges in the interval [φmin, φmax] whose end points are given by

m2 = 0 ⇒ φmin = arcsin(

√
Λ

2
), (17)

m1 = 0 ⇒ φmax = arccos(

√
Λ

2
), (18)

They only depend on Λ and fulfill the relation

φmin + φmax =
π

2

Since Λ is usually small, it is possible to use the approximate expressions:

φmin ≈ 0, φmax ≈
π

2

This is the reason why, in figure 4, φ ranges in the interval [0, π2 ].

Gravitational Resultant

The gravitational resultant, ~Rs, is given by the integral

~Rs = −
∫
S

µ

r2
~ur dm

that extends to the whole volume S occupied by the tether. The unit vector ~ur can more conveniently be
expressed as a function of the known unit vectors ~uG and ~u, and the variable η, as

~ur =
~r

r
=

~uG + η ~u√
1 + 2 η cosα+ η2

(19)

so that the integral takes the form

~Rs = − µ

r2G

∫
S

~uG + η ~u

(1 + 2 η cosα+ η2)
3
2

dm

Operating similarly to the previous section, the denominator can be expanded in series of ultraspherical
polynomials, which are a generalization of Legendre polynomials.12 We have considered appropriate to
include an appendix introducing ultraspherical polynomials and some of their properties that will be used
later in this paper. Thus, making use of the relation (30) to expand the denominator and identifying the In
integral functions, the gravitational resultant becomes

~Rs = − µ

r2G

∞∑
n=0

(−1)n C
( 3

2 )
n (cosα) (In ~uG + In+1 ~u ) . (20)

where the function C( 3
2 )

n (x) is the corresponding Ultraspherical Polynomial, also known as Gegenbauer
Polynomial.

Gravitational Torque

In order to obtain the gravitational torque acting upon the center of mass of the tethered system, ~Ms, we
must integrate in the whole volume of the tether, S, the gravitational force acting upon every single dm of
the tether considering its distance to the center of mass. In other words, the torque is calculated as

~Ms = −
∫
S
s ~u ∧ µ

r2
~ur dm.

Taking into account that s = rG η, substituting ~ur and expanding in ultraspherical polynomials as we did
for the resultant ~Rs, the gravitational torque finally takes the form

~Ms = − µ

rG

∞∑
n=0

(−1)n C
( 3

2 )
n (cosα) In+1 ~u ∧ ~uG (21)
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GRAVITATIONAL ACTIONS IN A NON-UNIFORM GRAVITY FIELD

According to the Full Two-Body formulation presented in §, the mutual gravitational potential is defined
as

V =

∫
S′

∫
S
V dm dM

where V dm dM is the differential gravitational potential between a tether mass element, dm, and a mass
element of the primary, dM , and must be integrated both over the volume S occupied by the tether and the
volume S ′ occupied by the primary. If we integrate over a non-homogeneous primary body, S ′, the resulting
differential potential, V dm, can be approximated by the well-known solid spherical harmonics expansion

V dm = −µ
r

∞∑
l=0

l∑
m=0

(
R

r

)l
Plm(sinϕ)

[
Clm · cos(mθ) + Slm · sin(mθ)

]
dm

where Clm and Slm are the potential coefficients, also known as Stokes coefficients, µ is the gravitational
parameter of the primary or attracting body andR is its reference radius. The Plm are the associated Legendre
functions, also known as Ferrer’s functions, and angles ϕ, θ are respectively the latitude and longitude in a
equatorial body-fixed reference frame. Notice that this expansion is convergent just as long as r > R.

The expression for the gravity potential might be interestingly simplified in the particular case in which
the considered celestial body has a revolution symmetry. It happens that this symmetry configuration makes
all potential coefficients vanish, except for the Cl0 subset. These are known as zonal coefficients, as they do
not depend on the longitude, and are usually redefined as Jl = −Cl0. In terms of only the zonal spherical
harmonics, the gravity field specific potential reduces to

V dm = −µ
r

[
1−

∞∑
l=2

J̄l

(
R

r

)l
P̄n(sinϕ)

]
dm (22)

Note that Eq. (22) has two terms, the first of which corresponds to the uniform or spherical gravity field
(V dm = −µ/r dm), and the seconds contains the contributions of the zonal harmonics.

Even though retaining just zonal harmonics and omitting tesseral and sectorial harmonics may seem like
a large simplification, results are still highly valuable, because 1) the highest perturbing harmonic is the J2,
and 2) in studying the long term dynamics, the effects of tesseral and sectorial harmonics average out and
only the effect of the Jl terms remains.

Now, we shall recalculate the gravitational potential, resultant and torque upon a tether in a non-uniform
gravity field, including the perturbations due to the zonal harmonics, Jl. Hence, we are going to deal with a
Full Two-Body Problem, as in Figure 2a, where both the tether and primary body are considered as extensive
bodies, with only two simplifying assumptions, 1) the tether is considered as a linear one-dimensional ele-
ment, and 2) the attracting body is assumed to have revolution symmetry, so that only zonal harmonics are
retained.

Gravitational Potential

Under these hypothesis, the mutual gravitational potential, V , is given by

V =

∫
S
V dm = −

∫
S

µ

r

[
1−

∞∑
l=2

Jl

(
R

r

)l
Pl(sinϕ)

]
dm

where the integral extends to the whole volume S occupied by the tethered system. This potential can be
broken down into a summation of two terms,

V = Vs + Vj ,
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such that the first term, Vs, turns out to be the potential for the case of a spherical attracting body, whose
solution we obtained earlier in Eq. (12), and the second term,

Vj =

∫
S

µ

r

∞∑
l=2

Jl

(
R

r

)l
Pl(sinϕ) dm

contains the contribution of the zonal harmonics to the whole potential V . Using Eq. (10) the potential takes
the form

Vj =
µ

rG

∞∑
l=2

Jl

(
R

rG

)l ∫
S

Pl(sinϕ)

(1 + 2 η cosα+ η2)
l+1
2

dm.

Now, it is convenient to develop the Legendre functions, Pl(sinϕ), as a summation of monomials using
the relation (33), yielding

Vj =
µ

rG

∞∑
l=2

Jl

(
R

rG

)l ∫
S

∑l
p=0 blp(1/2) · sinp ϕ

(1 + 2 η cosα+ η2)
l+1
2

dm.

The variable ϕ stands for the latitude of each tether element dm with respect to the equatorial plane of the
primary, and can be related to the latitude of the tether center of mass, ϕG, by means of the geometric relation

sin(ϕ) =
sin(ϕG) + η (~u · ~k)√

1 + 2 η cosα+ η2
(23)

where the unit vector ~k is aligned with the north pole of the primary, i.e. perpendicular to the equatorial
plane towards increasing value of the latitude. The use of the variable ϕG instead is advisable, since is it
known from the tether’s position vector ~rG, whereas the latitude ϕ depends on the linear position η along the
tether, and Eq. (23) makes this dependence explicit. Thus, substituting the value of sin(ϕ) in the gravitational
potential Vj , we arrive at

Vj =
µ

rG

∞∑
l=2

l∑
p=0

Jl

(
R

rG

)l
blp(1/2)

∫
S

(
sin(ϕG) + η (~u · ~k)

)p
(1 + 2 η cosα+ η2)

l+p+1
2

dm

At this point, recalling the Newton binomial permits the expansion(
sin(ϕG) + η (~u1 · ~k4)

)p
=

p∑
q=0

(
p
q

)
sinp−q(ϕG) (~u · ~k)q ηq

that leads to the potential to be written as

Vj =
µ

rG

∞∑
l=2

l∑
p=0

p∑
q=0

Jl

(
R

rG

)l
blp(1/2)

(
p
q

)
sinp−q(ϕG) (~u · ~k)q·

·
∫
S

ηq

(1 + 2 η cosα+ η2)
l+p+1

2

dm.

Now, taking a look at the denominator inside the integral, we realize that it is expandable in a series of
ultraspherical polynomials, according to the relation (30) and using the property (31). Also, making use of
the integral functions In introduced earlier (Eqs. (13) & (14)), the contribution of the zonal harmonics to the
gravitational potential finally takes the form

Vj =
µ

rG

∞∑
n=0

∞∑
l=2

l∑
p=0

p∑
q=0

(−1)n Jl

(
R

rG

)l
blp(1/2)

(
p
q

)
sinp−q(ϕG)·

· (~u · ~k)q C
( l+p+1

2 )
n (cosα) In+q,
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or expressed in terms of the coefficients an(φ,Λ) instead, as indicated by Eqs. (15) & (16), we arrive at

Vj =
µm

rG

∞∑
n=0

∞∑
l=2

l∑
p=0

p∑
q=0

(−1)n Jl

(
R

rG

)l
blp(1/2)

(
p
q

)
sinp−q(ϕG)·

· (~u · ~k)q C
( l+p+1

2 )
n (cosα) an+q

(
LT
rG

)n+q
. (24)

The complete mutual gravitational potential, V , is the sum of Vs and Vj .

Gravitational Resultant

Knowing the differential gravitational potential generated by a primary with revolution symmetry, V dm,
we get the gravitational resultant upon a tether by integrating −∇V dm over each dm of the tether, i.e.

~R =

∫
S
∇

{
µ

r

[
1−

∞∑
l=2

Jl

(
R

r

)l
Pl(sinϕ)

]}
dm

The gradient operator in spherical coordinates is given by

∇ =
∂

∂r
~ur +

1

r

∂

∂ϕ
~uϕ +

1

r cosϕ

∂

∂θ
~uθ,

though the revolution symmetry simplifies the operator, since ∂
∂θ = 0. Again, the above integral expression

for the gravity resultant may be broken down into a summation of two terms,

~R(r, ϕ) = ~Rs(r) + ~Rj(r, ϕ),

such that the first term, ~Rs, depends only on the distante r but not on the latitude ϕ, and turns out to be equal
to the resultant for the case of a spherical attracting body, whose solution we obtained earlier in Eq. (20), and
the second term,

~Rj = −
∫
S
∇

{
µ

r

∞∑
l=2

Jl

(
R

r

)l
Pl(sinϕ)

}
dm,

which does depend on both r and ϕ, contains the contribution of the zonal harmonics to the complete resultant
~R. Applying the gradient operator yields

~Rj =

∫
S

µ

r2

∞∑
l=2

Jl

(
R

r

)l [
(l + 1)Pl(sinϕ) ~ur −

dPl(sinϕ)

d(sinϕ)
cosϕ~uϕ

]
dm.

The unit vector ~ur can be expressed in terms of the known vectors ~uG and ~u, and the variable η using the
relation (19). Similarly, the unit vector ~uϕ can be written as

~uϕ = ~ur ∧ ~uθ = ~ur ∧

(
~k ∧ ~ur
| ~k ∧ ~ur |

)
=
~ur ∧ (~k ∧ ~ur)

cosϕ
=
~k − sin(ϕ) ~ur

cosϕ
,

which after replacing ~ur leads to

~uϕ =
1

cosϕ

(
~k − sinϕ

~uG + η ~u√
1 + 2 η cosα+ η2

)
. (25)

Additionally, by the property (32) of ultraspherical polynomials we can compute the differentiation of the
Legendre functions Pl(sinϕ) as

dPl(sinϕ)

d sinϕ
= C

( 3
2 )

l−1 (sinϕ). (26)
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Now, substituting unit vector ~uϕ in the gravitational resultant ~Rj and using the relations (10) and (26), the
resultant becomes

~Rj =
µ

r2G

∞∑
l=2

Jl

(
R

rG

)l
·

·
∫
S2

(l + 1)Pl(sinϕ) ~ur + C
( 3

2 )
l−1 (sinϕ) sinϕ~ur − C

( 3
2 )

l−1 (sinϕ)~k

(1 + 2 η cosα+ η2)
l+2
2

dm.

The integral part above can be broken down in another three integrals and solved separately proceeding
analogously as we did for the gravitational potential, i.e. replacing the unit vector ~ur with Eq. (19), express-
ing ultraspherical polynomials as summations of monomials according to Eq. (33), replacing sin(ϕ) with
Eq. (23), using the Newton binomials, expanding the denominators into new ultraspherical polynomials and
using the functions an(φ,Λ). After many mathematical manipulations, the gravitational resultant ~Rj finally
takes the form

~Rj = −µm
r2G

∞∑
n=0

∞∑
l=2

l−1∑
p=0

p∑
q=0

(−1)n Jl

(
LT
rG

)n+q (
R

rG

)l
bl−1,p(3/2)

(
p
q

)
·

· sinp−q(ϕG) (~u · ~k)q C
( l+p+2

2 )
n (cosα) an+q~k+

+
µm

r2G

∞∑
n=0

∞∑
l=2

l∑
p=0

p∑
q=0

(−1)n Jl

(
LT
rG

)n+q (
R

rG

)l
bl,p(1/2)

(
p
q

)
·

· sinp−q(ϕG) (~u · ~k)q (l + 1)C
( l+p+3

2 )
n (cosα)

(
an+q ~uG +

(
LT
rG

)
an+q+1 ~u

)
+

+
µm

r2G

∞∑
n=0

∞∑
l=2

l−1∑
p=0

p+1∑
q=0

(−1)n Jl

(
LT
rG

)n+q (
R

rG

)l
bl−1,p(3/2)

(
p+ 1
q

)
·

· sinp−q+1(ϕG) (~u · ~k)q C
( l+p+4

2 )
n (cosα)

(
an+q ~uG +

(
LT
rG

)
an+q+1 ~u

)

(27)

The complete gravitational resultant upon the tether, ~R, is the vector sum of its contributions, ~Rs and ~Rj .

Gravitational Torque

Now, including the zonal harmonics, the gravitational torque, ~M , is calculated with the integral

~M =

∫
S
s ~u ∧

[
∇

(
µ

r

(
1−

∞∑
l=2

Jl

(
R

r

)l
Pl(sinϕ)

))]
dm,

which can be, as we did in previous sections, broken down as a sum of two term,

~M = ~Ms + ~Mj ,

the first of which, ~Ms, is equal to the torque in the case of a spherical attracting body and we already calculated
it in Eq. (21). The other term, ~Mj , contains the contribution of the Jl zonal harmonics of the primary. After
applying the gradient operator in spherical coordinates and taking on account the revolution symmetry, the
torque component ~Mj reduces to

~Mj = rG

∫
S
η ~u ∧

(
µ

r2

∞∑
l=2

Jl

(
R

r

)l [
(l + 1)Pl(sinϕ) ~ur −

dPl(sinϕ)

d(sinϕ)
cosϕ~uϕ

])
dm.
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The derivation of the torque ~Mj into its final expression is exactly analogous to that of the gravitational
resultant, ~Rj , that we carried out in the previous section. The needed mathematical manipulations take
nothing new that has not already been used or explained in the current paper, so we have omitted its full
derivation for the sake of brevity, and decided to bring directly the final expression, assuming the reader
should get to the same results with little effort. Thus, the torque component ~Mj finally takes the form

~Mj = −µm
rG

∞∑
n=0

∞∑
l=2

l−1∑
p=0

p∑
q=0

(−1)n Jl

(
LT
rG

)n+q+1(
R

rG

)l
bl−1,p(3/2)

(
p
q

)
·

· sinp−q(ϕG) (~u · ~k4)q C
( l+p+2

2 )
n (cosα) an+q+1

(
~u ∧ ~k

)
+

+
µm

rG

∞∑
n=0

∞∑
l=2

l∑
p=0

p∑
q=0

(−1)n Jl

(
LT
rG

)n+q+1(
R

rG

)l
bl,p(1/2)

(
p
q

)
·

· sinp−q(ϕG) (~u · ~k)q (l + 1)C
( l+p+3

2 )
n (cosα) an+q+1 (~u ∧ ~uG) +

+
µm

rG

∞∑
n=0

∞∑
l=2

l−1∑
p=0

p+1∑
q=0

(−1)n Jl

(
LT
rG

)n+q+1(
R

rG

)l
bl−1,p(3/2)

(
p+ 1
q

)
·

· sinp−q+1(ϕG) (~u · ~k)q C
( l+p+4

2 )
n (cosα) an+q+1 (~u ∧ ~uG) ,

(28)

and the total torque acting upon the tethered system, ~M , is of course the vector sum of both contributions,
~Ms and ~Mj .

FINAL EXPRESSIONS AND SIMPLIFICATIONS

(a) n 6= 0, l 6= 0 (b) n 6= 0, l = 0

(c) n = 0, l 6= 0,
LT = 0 (d) n = l = 0

Figure 5: The general expressions for the full two-body problem
can be simplified to provide expressions applicable to the other
simpler approaches of the Two-Body Problem introduced in Fig. 2

Once the mutual gravitational
potential V (Eqs. (12) + (24)), re-
sultant ~R (Eqs. (20) + (27)) and
torque ~M (Eqs. (21) + (28)) have
been developed in the general ap-
proach of the Full Two-Body Prob-
lem (Figure 2a), one can easily sim-
plify them in order to obtain any
of the other approaches to the Two-
Body Problem (Figures 2b - 2d)
that we introduced in section .

The general expressions are mainly
double infinite series expansions
with summation indexes n and l.
The index l is related to the degree
of accuracy with which the celes-
tial body is modeled as an exten-
sive body. Hence, truncating the
summation at l = 0 would lead to
the case of an extensive tether be-
ing attracted by a mass point celes-
tial body, as in Figure 5b.

Similarly, the index n is re-
lated to the degree of accuracy with
which the tether is modeled as an extensive body. Therefore, truncating the summation at n = 0 is expected
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to lead to the case of a mass point tether attracted by an extensive body, as sketched in Figure 5c, but it turns
out that this simplification is not enough, but additionally one has to impose LT = 0. We will try to further
clarify this issue in the next section.

Evidently, truncating both series together at n = 0 and l = 0 would lead to the case in which both bodies
are considered as mass points, as shown in Figure 5d.

A CLOSER LOOK AT THE GENERAL EQUATIONS

If we take a careful look at the final Equations we realize that summations over index n begin at n = 0
while summations over l begin at l = 2. This is because in their derivation we chose to break the equations
down into 1) a spherical component, where the tether is assumed extensive but the primary is spherical, so
there is only a summation over n, and 2) a component gathering the mixed effect of the extensive tether
and zonal harmonics of the primary, hence with a double summation over n and l. Of course, as the first
zonal harmonic is in fact the spherical case, both components can be brought together into more compact
expressions, where the single summation over n is contained inside the double summation and indexes begin
at n = 0 and l = 0. For the sake of example, let’s take the gravitational potential V , which can be more
compactly rewritten as

V = +
µm

rG

∞∑
n=0

∞∑
l=0

l∑
p=0

p∑
q=0

(−1)n an+q Jl

(
R

rG

)l(
LT
rG

)n+q
bl,p(1/2)

(
p
q

)
·

· sinp−q(ϕG) · (~u · ~k)q · C( l+p+1
2 )

n (cosα).

(29)

If fact, it is easy to check that when l = 0, then

q = p = 0, J0 = −1, b0,0(1/2) = 1, C
( l+p+1

2 )
n (cosα) = Pn(cosα), and

(
p
q

)
= 1,

so equation (29) reduces to Eq. (12), namely Vs.

Another interesting issue is the fact that these expressions are given in the form of two embedded conver-
gent summations in powers of two small parameters, LT /rG and R/rG, as well as combinations of both.
This brings on the table the next question: how do those series converge, or how small are each of the terms
of these expressions? Or most importantly, in order to achieve a required accuracy, which terms should we
retain when truncating these series expansions? These questions have no easy general answer and should
rather be looked into for each particular scenario, though for typical low Earth orbits and reasonable tether
lengths one can expect that (

LT
rG

)
�
(
R

rG

)
,

so the series on n should converge faster. However, when we take into account that the parameter R/rG
is always accompanied by coefficients Jl, whose value is smaller for increasing l, then we have that, for a
certain value of n, there is a value of l beyond which the previous relation inverts, i.e.

∀n,∃L such that
(
LT
rG

)n
&

(
R

rG

)l
Jl ∀l > L

where the sign ‘&’ is used because the decrease in the values of the coefficients Jl is not necessarily mono-
tonic.

On the one hand, these series convergence rates depend on the magnitude of the small parameters, which
are functions of rG, R and LT , so they depend on the primary, the orbit and the length of the tether.

On the other hand, the relative magnitude of each of the terms in the summation also depends on further
parameters, namely 1) the primary’s gravitational model, through the Jl coefficients, 2) the orbit, through the
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latitude ϕG, 3) the attitude of the tether, through the angle α and unit vector ~u, and 4) the mass geometry of
the tether, through the functions an(φ,Λ).

Thus, it is clear that deciding where to truncate these series expansions is not easy to know in advance,
since it is very problem-dependent. However, we could try to get some insight by neatly sorting these terms
and taking a look at them. Equation (29) is more advantageous than its original form for this task. Let us
rewrite Eq. (29) as

V = −µm
rG

∞∑
n=0

∞∑
l=0

Ψnl

where Ψnl, easily obtainable by identifying terms in Eq. (29), are functions that can be orderly sorted in a
squared array, as

l

0 1 2 3 · · ·

n

0 1 0 Ψ0,2 Ψ0,3 · · ·

1 0 0 Ψ1,2 Ψ1,3 · · ·

2 Ψ2,0 0 Ψ2,2 Ψ2,3 · · ·

3 Ψ3,0 0 Ψ3,2 Ψ3,3 · · ·

...
... 0

...
...

. . .

where one can observe that Ψ1,0 = 0 because a1 = 0, and similarly the column Ψn,1 is always null, since
J1 = 0.

Attending at the expressions for Ψnl, it is straightforward to see that

Ψn,0 = (−1)n
(
LT
rG

)n
an Pn(cosα),

as making l = 0 gets rid of the effect of the zonals, thus we recover the expressions for an extensive tether
around a spherical primary. However, a curious happening that we noticed in the previous section is that,
against intuition,

Ψ0,l 6= −Jl
(
R

rG

)l
Pl(sinϕG),

so making n = 0 is not a sufficient condition to recover the case of a mass point tether around a non-uniform
primary. Instead, one must also impose LT = 0. Indeed,

lim
LT→0

Ψ0,l = −Jl
(
R

rG

)l
Pl(sinϕG), ∀l.

Also note that the last equation is satisfied when ~u · ~k = 0 as well, which also makes the trick.

Roughly explained, one would expect that making n = 0 would reduce the effect of the zonal harmonics
as affecting only the motion of the tether center of mass, G. However, there is some remaining contribution
of the local gravity gradient that affects each end-mass and distributed mass element of the tether differently.
Thus, the only way to make this contribution vanish, is by imposing the additional constraint LT = 0, so that
the tether really does simplify to a mass point.

Now we are in situation to shed some light on the issue of truncating the series, since now we can give
values to these Ψnl functions, and see how big or small they are relatively. In order to do so, as Ψnl depend
on so many other parameters, we have to begin by setting up some realistic scenario to fix the values of all
these parameters.
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For example, we may take a low Earth orbit of 400 km of altitude with a tether length LT = 10 km. Thus,
the small parameters will become(

LT
rG

)
= 0.000738,

(
R

rG

)
= 0.94099

If the tether has symmetric end masses, then an = 0 for n = 1, 3, 5, 7, ... so to make an illustrative example
we shall take m1 = 400 kg, m2 = 800 kg and mT = 10 kg. This gives φ = 54.65◦ and Λ = 0.00826.
Lastly, in order to avoid that α, ϕG or (~u · ~k) become zero, we should choose an arbitrary orbit geometry, as
for example α = 45◦, ϕG = 45◦ and (~u·~k) = 1, which sets the tether aligned with vector ~k. For this scenario,
the first values of Ψnl are shown in Table 1. The observation of these results in this particular scenario shows
that the largest term that considers the extension of the tether is Ψ2,0, whose order of magnitude is the same
as for the orbital perturbation introduced by the zonals J3, J4, and already bigger than the J5 perturbation.

We also see that the series in n is so much rapidly converging than in l, since this is a low Earth orbit with a
short tether, so (LT /r)� (R/r) ∼ 1. However, it is interesting to see what happens when we move further
away in the index l, i.e. when we take higher degree zonal harmonics. For instance, the main contributions to
the perturbation of J11 is given by Ψ0,11 = −2.709 · 10−9, which is already of the same order of magnitude
as the mixed terms Ψ1,2 and Ψ2,2. Also, the perturbation of J15 already gives Ψ0,15 = −7.962 · 10−11,
whose order of magnitude coincides with those of Ψ3,0 and Ψ1,3. Hence, we observe that for high precision
applications where many zonal harmonics are required in the computations, it becomes necessary, for error
consistency, not also to include the effect of the tether extension through the terms Ψn,0, but also through
some of the mixed terms Ψn,l, for n > 1, l > 2.

In order to see how these values of Ψnl change under different values of some of the parameters, we tried
also a equatorial orbit with the tether still aligned with ~k, i.e. we set the values α = 90◦, ϕG = 0◦ and
~u ·~k = 1. Results are gathered in Table 2. The most notorious phenomenon is that Ψnl with odd index n or l
have suffered a considerable drop of several orders of magnitude, though still remain non-zero.

Another interesting experiment is to see what happens if we force the tether to be contained in the equatorial
plane too (~u · ~k = 0), so that the whole motion is planar. Here we have too basic possibilities, one where the
tether is perpendicular to the position vector ~rG (i.e. α = 90◦), and another where the tether lies in the local
vertical (α = 0◦). In both cases, making ~u · ~k = 0 has vanished Ψn,l for odd values of l. The difference
can be seen in the rows, where for α = 90◦, the Ψn,l with odd index n still contain the several orders of
magnitude drop in their value. For α = 0◦, however, the convergence in n is smooth again, where Ψn,l are
increasingly smaller for higher values of n, but without showing any sudden drop. In fact, for this planar
motion Eq. (29) can be reduced to

V =
µm

rG

∞∑
n=0

∞∑
l=0

(−1)n an Jl

(
R

rG

)l(
LT
rG

)n
P0(0)C

( l+1
2 )

n (cosα),

where we can clearly see that the value of the potential V is related to the angle α only through ultraspherical
polynomials.

In order to explore what happens with the resultant of the torque, rather than the potential, one could
proceed similarly, with the difference that these magnitudes are vectorial instead of scalar. For this equatorial
planar case, for example, it is of particular interest to observe how the expression for the gravity torque
simplifies to

~M =− µm

rG

∞∑
n=0

(−1)n an+1

(
LT
rG

)n+1

·

[
C(3/2)
n (cosα) +

−
∞∑
l=2

Jl

(
R

rG

)l(
bl,0(1/2) (l + 1)C

( l+3
2 )

n (cosα) + bl−1,0(3/2)C
( l+4

2 )
n (cosα)

)]
(~u ∧ ~uG) +

+
µm

rG

∞∑
n=0

∞∑
l=2

(−1)n an+1

(
LT
rG

)n+1(
R

rG

)l
Jl bl−1,0(3/2)C

( l+2
2 )

n (cosα) (~u ∧ ~k).
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l

0 1 2 3 4 5

n

0 1 0 −2.397 · 10−04 −3.730 · 10−07 −5.160 · 10−07 −6.316 · 10−08

1 0 0 3.462 · 10−09 −1.346 · 10−11 −8.011 · 10−12 −1.841 · 10−13

2 1.204 · 10−07 0 −1.642 · 10−09 4.249 · 10−12 9.142 · 10−13 −3.498 · 10−13

3 −4.140 · 10−11 0 −9.383 · 10−13 4.821 · 10−15 3.556 · 10−15 1.376 · 10−16

Table 1: Values of Ψnl for the scenario under study, with α = 45◦, ϕG = 45◦ and ~u · ~k = 1

l

0 1 2 3 4 5

n

0 1 0 4.793 · 10−04 −1.235 · 10−15 4.763 · 10−07 3.446 · 10−16

1 0 0 −1.043 · 10−27 4.72 · 10−27 −4.835 · 10−30 −6.583 · 10−28

2 −2.409 · 10−07 0 −3.463 · 10−10 −1.853 · 10−15 −5.736 · 10−13 2.584 · 10−16

3 −2.175 · 10−25 0 −5.214 · 10−28 −1.191 · 10−21 −1.209 · 10−30 2.135 · 10−33

Table 2: Values of Ψnl for the scenario under study, with α = 90◦, ϕG = 0◦ and ~u · ~k = 1

l

0 1 2 3 4 5

n

0 1 0 4.793 · 10−04 0 4.763 · 10−07 0

1 0 0 0 0 0 0

2 −2.409 · 10−07 0 −3.463 · 10−10 0 −5.736 · 10−13 0

3 −2.175 · 10−25 0 −5.214 · 10−28 0 −1.209 · 10−30 0

Table 3: Values of Ψnl for the scenario under study, with α = 90◦, ϕG = 0◦ and ~u · ~k = 0

l

0 1 2 3 4 5

n

0 1 0 4.793 · 10−04 0 −4.763 · 10−07 0

1 0 0 0 0 0 0

2 4.817 · 10−07 0 1.385 · 10−09 0 3.441 · 10−12 0

3 2.342 · 10−10 0 1.123 · 10−12 0 3.904 · 10−15 0

Table 4: Values of Ψnl for the scenario under study, with α = 0◦, ϕG = 0◦ and ~u · ~k = 0
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We can see that for the case of a librating tether aligned with the local vertical, i.e. α = 0◦, we get
~M · (~u ∧ ~uG) = 0. On the other side, the torque component along vector ~u ∧ ~k is only non-zero for

odd values of l, where bl−1,0(1/2) 6= 0. This means that odd zonal harmonics provoke a torque which is
contained in the orbital plane, and hence the torque tends to take the tether end-masses out of the equatorial
plane, hence making the local vertical configuration of the tether a non-equilibrium configuration. This is a
remarkable fact, since in the in-plane orbital motion, the local vertical configuration is a equilibrium position
of indifferent stability properties, and the system responds to a ∆α perturbation by introducing a disturbing
torque

∆ ~M =
µm

rG
a2

(
LT
rG

)2

C
(3/2)
2 (cos ∆α) sin ∆α ~k

in its first order approximation, with n = 2 and l = 0. However, as soon as the tether leaves the plane, then
~M · (~u ∧ ~uG) 6= 0 and a restoring torque appears, yielding an oscillatory motions.

CONCLUSIONS

In this paper we have developed expressions for the gravitational actions (gravity potential V , resultant
~R and torque ~M ) upon a space tether under the restricted Full Two-Body approach, where the tether has
been considered an extensive body with linear geometry, and the primary has been considered as an extensive
body with revolution symmetry, where an arbitrary number of zonal harmonics have been retained. These
expressions are given in the form of an embedded double series with two small parameters: a summation over
index n in powers of LT /rG, which comes from the extension of the tether, and a summation over index l in
powers ofR/rG, which comes from the zonal harmonics. We have studied through examples the convergence
of these series for the gravitational potential, and concluded that for high precision applications where higher
degree zonal harmonics need to be retained, then not only terms of the tether extension (n 6= 0, l = 0) must be
taken into account, but also becomes necessary to consider some of the mixed terms (n 6= 0, l 6= 0) coming
from the mutual two-body interaction, in order to keep consistency with the gravitational modeling of the
dynamics.

ACKNOWLEDGMENTS

This work was carried out in the framework of the research project entitled Dynamic Simulation of Com-
plex Space Systems (AYA2010-18796) supported by the Spanish Ministry of Economy and Competitiveness.
Authors thank the Spanish Gov. for its support.

We would also like to thank the Techical University of Madrid (UPM) for supporting Hodei Urrutxua in
the development of his Ph.D. Thesis under their graduate scholarship program.

Finally, the authors also wish to thank Claudio Bombardelli and Daniel J. Scheeres for their kind revision
of the manuscript and their constructive suggestions.

REFERENCES
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APPENDIX: ULTRASPHERICAL POLYNOMIALS

Ultraspherical polynomials are a generalization of Legendre polynomials.12 They are orthogonal poly-
nomials on the interval [−1, 1], and are special cases of the Jacobi polynomials. They are solutions to the
Gengenbauer differential equation

(1− γ2)
d2

dγ2
C(λ)
n (γ)− (2λ+ 1) γ

d

dγ
C(λ)
n (γ) + n(n+ 2λ)C(λ)

n (γ) = 0.

Therefore, these functions C(λ)
n (γ) are also known as Gegenbauer Polynomials. When λ = 1/2, the equation

reduces to the Legendre equation, and the ultraspherical polynomials reduce to the Legendre polynomials.

These polynomials can also be defined in terms of their generating function, as the coefficients in a Taylor
series expansion

1

(1− 2 γ η + η2)λ
=

∞∑
n=o

ηn C(λ)
n (γ), (30)

where η � 1.

Hence, the first ultraspherical polynomials are

C
(λ)
0 (γ) = 1

C
(λ)
1 (γ) = 2λ γ

nC(λ)
n (γ) = 2 (n+ λ− 1) γ C

(λ)
n−1(γ)− (n+ 2λ− 2)C

(λ)
n−2(γ)

Among many properties of the ultraspherical polynomials, the derivations in this paper make use of the
following two

C(λ)
n (−γ) = (−1)n C(λ)

n (γ) (31)
d

dγ
C(λ)
n (γ) = 2λ C

(λ+1)
n−1 (γ) (32)

Ultraspherical polynomials, by definition, can be expressed as a summation of monomials. Thus, we could
convert any C(λ)

n (γ) polynomial into a finite series by means of the relation

C(λ)
n (γ) =

n∑
p=0

bnp(λ) γp (33)

where the coefficients bnp(λ) are easily identified.13
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