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The problem of estimating the necessary conditions under which a passive 
electrodynamic tether (EDT) increases the orbital energy of a satellite is studied 
in its full generality. We derive the thrust conditions of both spinning and non-
spinning EDT and the maximum achievable thrust for a generic orbit and tether 
attitude. After showing that in general thrust arcs are possible even when the 
orbital velocity exceeds the plasma velocity we show an example of EDT orbit 
raising starting from a low-altitude equatorial elliptic orbit around Jupiter. 

 

INTRODUCTION 

An electrodynamic tether (EDT) without external power supplies can be used for extracting 
useful power from the interaction with a planetary magnetic field in the presence of plasma and is 
said to be working in “passive” or “generator mode”. Depending on spacecraft design and 
environmental conditions this scheme can provide a power generation scheme with higher 
performance with respect to conventional hardware. 

In most circumstances a passive EDT optimized for power generation experiences orbit decay 
as part of the energy produced comes at the expense of orbital energy. In other words the 
resulting Lorentz force produced by the current flowing along the tether has a component which 
opposes the instantaneous orbital velocity hence acting as drag. However, in the general scenario 
both power generation and thrust are possible. For example a passive EDT in circular equatorial 
orbit experiences thrust whenever the local plasma velocity exceeds the spacecraft velocity. In the 
Jupiter system, where the plasmasphere extends well beyond stationary orbit, this allows for 
efficient orbit control with continuous power generation [1].  

In this article we show that when elliptical and/or inclined orbits are considered the picture 
becomes more complex and some novel results emerge. In particular thrust arcs become possible 
even for the case in which the spacecraft orbital velocity is higher than that of the local planet-
corotating plasma allowing in principle orbit raising at arbitrarily small orbit radius and therefore 
enhancing orbit controllability. 

The structure of the article is the following. First we derive the equations describing the 
Lorentz thrust profile of an EDT whose line is orthogonal to the magnetic field and inclined by 
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and angle β  with respect to the local motional electric field. From the thrust profile we obtain the 
tether attitude range which provides a positive Lorentz force component in the direction of the 
instantaneous velocity vector as well as the orientation angle for maximum force. 

 

 

We will consider two types of The system considered here is a passive EDT spinning in the 
orbital plane and whose current can be switched on and off depending on both the tether rotation 
angle and the location along the orbit in order to maximize thrust capability. Two classes of orbits 
are considered: elliptic equatorial orbits of varying eccentricities and circular orbits of varying 
inclinations. The necessary conditions for orbital energy increase are derived and the normalized 
thrust magnitude is mapped along the parameters space of the relevant orbital elements. 
Numerical values are then computed for Earth, Jupiter and Saturn orbits. Lastly, based on the 
results obtained, a numerical example of orbit raising starting from a low altitude orbit around 
Jupiter is investigated. 

<to be extended…> 

 

TETHER ORIENTATION FOR MAXIMUM THRUST  

Let us consider a passive bare electrodynamic tether of length L flying in a generic planetary 
orbit in the presence of a local magnetic field B and plasma of electron density Ne. Let vsc and vpl  
indicate the inertial velocity of the tether center of mass and the local plasma at a given time t.  

The motional electric field along the orbit is defined as: 

 

( )[ ]BvvE ∧−= plsc  ,        (1) 

 

and can be assumed constant along the tether for reasonable tether size. 

Eq.(1) can also be written as: 

 

( )⊥⊥ −= plscB vvRE 2/π  ,        (2) 

 

where B is the magnetic field magnitude, ⊥
scv , ⊥

plv  are the component of the spacecraft and 

plasma velocity orthogonal to the magnetic field and Rπ/2 is a rotation matrix of angle π/2 around 
the z axis.  

 

We will now pose the following basic questions: given the three vectors vsc, vpl and B what is, 
if it exists, the attitude range of the tether line for which the resulting Lorentz force increases the 
orbital energy of the system? And for what orientation such energy increase is maximum? 



After noticing that any component of the tether line parallel to B does not produce any force 
the analysis can be restricted to the case in which the tether line is orthogonal to B. 

Let us then set a right-handed Cartesian reference system centered at the tether center of mass 
and with the z axis aligned with B and the y axis aligned with E. Let β  be the angle between the 
tether line and the y axis which corresponds to the angle between the Lorentz force vector and the 
x axis.  

The Lorentz force is a vector orthogonal to the tether line with magnitude: 

 

BLIF av=  ,          (3) 

 

where Iav is the average current in the bare electrodynamic tether. For the case of a tape tether 
the latter can be expressed as [2]: 
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where w is the tether width, qe and me are the electron mass and charge and ζ is the 
dimensionless zero-bias length for a tether with no ohmic effects. The parameter ζ can be 
optimized for maximum onboard power generation or can be set to one for maximum thrust and 
no power generation. 

Finally η<1 is a parameter which takes into account the decrease in current due to ohmic 
effects and/or ion collection in the negatively biased portion of the tether, if present.  

 

At this point we can write the x and y component of the force vector as a function of the tether 
attitude as follows: 
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where Fmax is the maximum force achievable, which is obtained from Eqs. (3,4) after setting 
β=0: 
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The curve is plotted in Fig. 1 and related to the vectors ⊥
scv  and ⊥

plv . Clearly, with the 

exception of the case in which the spacecraft velocity component ⊥
scv  is parallel and either 

smaller or opposite to the plasma velocity component ⊥
plv , there always exists a range of tether 

orientations (∆β) for which the Lorentz force acts as thrust (i.e. increases the energy of the orbit).  

This means that in general the EDT can not only supply “propellantless” thrust but also 
“power-free” thrust. In other words it is the kinetic energy of the rotating plasmasphere alone 
which directly supplies mechanical energy to the spacecraft motion. In such case external energy 
supplies will no longer be indispensable in order to obtain thrust. 

 

 

  
Fig.1. Force curve and optimum thrust orientation for an EDT. The magnetic field vector B is 

directed out of the page 

 

 

Referring to Fig.1 the vector tangent to the force curve is: 
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The maximum thrust condition is obtained when the latter is orthogonal to the velocity vector: 

 



( )Tscsc v φφ sin,cos×=v  ,        (8) 

 

so that the equation to be solved is: 
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from which we derive the optimal tether orientation as: 
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with 
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To avoid the use of the piecewise function the following empirical expression can be used: 
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with an error of less than 5%. 

 

The range of tether orientations for which thrust is achieved can be computed from Fig.1: 
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Once the optimal tether orientation is obtained one can define the force reduction coefficient 
which is defined as the ratio between the total force magnitude and the maximum force 
achievable for the same tether at that orbit location: 

 

 
max

)(
F

F optβ
µ = .         (14) 

 

The coefficient µ can be computed according to Eq (12). Alternatively the following empirical 
expression can be used within an error of 2%: 
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Perhaps more useful for quantifying the thrust capability of the EDT is the thrust reduction 
coefficient, defined as the ratio between the Lorentz force component along the velocity vector 
and the maximum force magnitude: 
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where ν is the angle between the spacecraft velocity vector and the force plane. 

From equation (12,15) one can obtain: 
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Fig.2. Optimal EDT orientation angle (left) and force reduction coefficient (right). 

 

 

In Fig.3 we visualize the maximum-thrust orientation of  an EDT dumbbell for an elliptical 
equatorial orbit where the magnetic field is modeled as dipole aligned with the planet rotation 
axis and the plasma is rigidly co-rotating with the planet. 

Evidently, the tether orientation is in general far from the equilibrium configuration of a 
gravity gradient stabilized system so that achieving maximum thrust along the whole orbit would 
possibly require a continuos and complex attitude control scheme. A more reasonable control 
strategy would possibly employ a spinning system phased in such a way to achieve sub-optimum 
thrust conditions but requiring a much simpler control algorithm to achieve proper phasing. 
Finally, fast-spinning tethers can also be considered in which case the attitude control burden can 
be reduced to a minimum while still providing thrust capability. The latter scheme will be dealt 
with in the next section. 

 

 

                                                                                                             

 
Fig.3. Optimal EDT orientation along an equatorial elliptic orbit with eccentricity 0.5. An 

aligned magnetic field dipole is assumed and a planet co-rotating plasmasphere. 



AVERAGE THRUST FOR FAST-SPINNING EDT 

 

For the case of a spinning EDT with period much smaller than the orbital period the Lorentz 
force can be averaged along a full tether rotation while still retaining good orbit propagation 
accuracy. 

We will start by deriving the average Lorentz force for the simplified case in which the tether 
spins around an axis always parallel to the direction of the magnetic field. This is the case of 
having the EDT flying in equatorial orbits while spinning in the orbital plane and neglecting the 
magnetic dipole tilt. 

From Eq. (5) and after denoting with nC the number of cathods (nC =2 for dual-cathod EDT, nC 
=1 for single-cathod EDT) the average Lorentz force components along the thrust arc ∆β  yield: 
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with 
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and where 
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 indicates an incomplete elliptic integral of the first kind. 

 

After plugging Eqs.(19) into Eqs.(18) we obtain the final expression of the average force 
components: 

 






















+







 +
+= 2,

2
22,

4
2

sinsincos
3

max
0 FF

Fn
F C

x

 πφ
φφ

π
  (21.1) 

 

2/3max
0 sin

3
φ

φ
φ

π
Fn

F C
y =         (21.2) 

 

 

                                                                                                             

E

B

E∧B

uω
ψ

θ

Lcosψ
L

 
Fig.4. Orientation of tether spin axis with respect to the magnetic field vector and force plane. 

 

In the most general scenario the tether spin axis is not parallel to the magnetic field which 
reduces the average force achievable. Referring to Fig. 4 the tether spin axis uω is inclined with 
respect to the magnetic field and force plane by the angles θ and ψ. To simplify the notation we 
assume, without loss of generality 0<ψ<π/2. 

After calling λ the tether rotation angle around uω we derive, from basic trigonometry,  the 
projected tether length ρ(t) on the force plane and the sine and cosine of the angle between the 
latter and the x axis: 
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In addition, we have : 
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So that the general expression of the force vector becomes: 
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defined in the interval: 
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with: 
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The interval [λmin λmax] that provides thrust can be derived  starting from βmin and βmax and 
with some trigonometry considerations. Finally one obtains: 
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It is now possible to compute the average value of the force components as: 
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Unfortunately, in the most general case the integrals cannot be solved in close analytical form. 
The preferred solution is to compute the integral numerically at every integration step. 

 

OPTIMUM VELOCITY CONDITIONS WITH RESPECT TO THE PLASMA 

 

Let us suppose that our EDT crosses the plasmasphere with velocity of given magnitude vsc 
while the local plasma velocity has magnitude vpl. Let α be the angle between the two velocity 
vectors. It is interesting to evaluate the achievable thrust for varying α and to search for optimum 
conditions. 

The direction of the maximum Lorentz force vector can be computed as: 

 

)(2 ⊥⊥ −=∧ scplB vvBE .        (30) 



 

As seen in the previous section the maximum thrust is achieved when the absolute value of 
angle between the latter and the spacecraft velocity ⊥

scv   is minimum.  

Referring to Fig. 5 two cases need to be distinguished. When the spacecraft velocity is greater 
than that of the plasma (Fig. 3, left side) the optimum condition obeys: 
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in other words when the EDT is faster than the plasma the optimum thrust conditions occur 
when the spacecraft velocity component in the direction of the plasma velocity vector is equal to 
the plasma velocity magnitude. 

On the other hand when the spacecraft velocity is smaller than that of the plasma (Fig. 3, right 
side) the optimum condition obeys: 
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which means that when the EDT is slower than the plasma the optimum thrust conditions 
occur when the spacecraft velocity is parallel to the plasma velocity. 
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Fig.5. Optimal spacecraft velocity orientation with respect to local plasma velocity for the two 

cases of spacecraft faster(a) and slower(b) than the plasma. 

 



 

PERFORMANCE ALONG ELLIPTIC EQUATORIAL ORBITS AROUND JUPITER 

 

We will now apply the results obtained in the previous section to real mission cases 
considering two control schemes: 

 

a) The tether line is constantly oriented along the thrust-optimum direction and the current is 
always switched on. 

b) The tether spins around an axis of fixed inertial orientation and the current is switched on 
whenever the Lorentz force corresponds to an increase in orbital energy. 

 

The scenario a) is useful from the theoretical point of view as it represents an upper limit for 
the thrust achievable and, in turns, a quasi-optimum solution to the orbit raising problem. While 
the real optimum solution could still require the current to be switched off at convenient times the 
full optimization problem will not be addressed in this article. 

From the practical point of view the scenario a) is not very realistic for different reasons. Most 
importantly it may not be possible to control a very- large-angular-momentum system to track a 
quickly changing attitude as required to satisfy the maximum thrust conditions. In addition the 
tether itself would likely encounter zero-tension conditions as the optimum attitude generally lies 
away from the maximum gravity gradient condition.  

Scenario b) is undoubtedly more close to a real life situation. In fact a fast spinning EDT 
would undergo a small pointing drift from an inertially fixed axis as long as the angular velocity 
is sufficiently high [3]. On the other hand it is reasonable to think that some improvements on the 
EDT performance could be gained when compared to scenario b). For example a clever phasing 
of the spin rate with the orbit could allow the tether to be close to the ideal orientation at 
convenient points along the orbit. 

In the example below we start from a low Jupiter orbit with eccentricity 0.35 and periapsis radius 
at 1.06 Jupiter radii (altitude of 4300 km). A 40-km-long aluminum tape tether with 0.05 mm 
thickness and 5 cm width was employed for a total tether mass of 270 kg. A payload of 200 kg 
mass was added, for a total 470 kg mass. A full Divine-Garrett ionospheric model was employed 
while ohmic effects were neglected. 
Result based on scenario a) and b) are plotted in Figs. 6-11. 
 
It is interesting to notice how the plasma/spacecraft  electrodynamic interaction results in a 
circularization of the initial orbit with an overall gain in orbital energy. The difference between 
the ideally-controlled with the uncontrolled EDT is overwhelming. 
Finally we can see that the Lorentz force component normal to the orbit is more than one order of 
magnitude bigger than the tangential one suggesting that its role on the orbit evolution may be 
substantial if not dominant. 
 
 



 
 

Fig.6. Evolution of periapsis and apoapsis for scenario a (left) and b (right)  
 

 
 

Fig.7. Evolution of semimajor axis for scenario a (left) and b (right) 
 

 
Fig.8. Evolution of eccentricity for scenario a (left) and b (right) 

 
 



 
 

Fig.9.First orbit tangential thrust component for scenario a (left) and b (right) 
 

 
 

Fig.10.First orbit normal thrust component for scenario a (left) and b (right) 
 

 

CONCLUSIONS 

 

We have shown that in the most general scenario of orbits which are non-equatorial and/or 
non-circular electrodynamic tethers (EDT) working in passive mode can always produce thrust in 
such a way that the energy of the orbit increases. From an energetic point of view it is the planet-
corotating plasmasphere which supplies mechanical energy to the spacecraft in the presence of 
the EDT. Optimum EDT orientations with respect to the local motional electric field were derived 
and can be used to optimize EDT orbital maneuvering around Earth and Jupiter. A numerical 
example starting from a low altitude elliptic orbit around Jupiter have been studied showing that 
the global effect of the Lorentz force is a circularization of the orbit superimposed to an increase 
of energy.  
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